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SUMMARY

The effects of iron impurities in the electro~yte on the lithium anode passivation

have been studied further, using both the standard cell hardware and the isolated cell

components within a glass cell arrangement. Cold rolled steel was found stable in the

inorganic electrolyte if it was held strictlv at the potential of lithium. The slightest

deviation of the potential from this value resulted in severe corrosion, generated iron

species in the solution, and caused the passivation effects described in previous reports.

A large area of c-'d iolled steel cans, exposed to the electrolyte in the present t.ype of

cell construction at an appreciable distance from the contact with lithium, appears

to form dissolution sites generating more than tolerable amounts of iron in the solution.

For this reason, the idea of building the large cells with cold rolled steel hardw-are

will have to be abandoned. Attention was gradually switched to studies of stainless

steel as the cell hardw-are.
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1. INTROD CTION

The tests carried out in this program have demonstrated that it is not vet

possible to construct lithium cells that would he capable )f high discharge rates after

a prolonged storage ulthout a ti,ne delav In reaching a stable operating voltage. It

has been established that Lhe cause of the delay is the build-up of a passivating film

on the lithium anode.I The effect this film has on the discharge characteristics hai

been well documented by this and other laboratories. -

It has been previously r. norted3 that iron species introduced into the electro-

lyte via AICI3 or through corrosion of cell hardware produces the strongest negative

effect on the passivation of lithium anodes. This effect of iron warranted further study

of the contribution of the cell hardware to the amount ()f iron present in the cell.

Once the source of iron was identified, it was of interest to establish the

distribution of iron within the active components of the cell; :,earing in mind that th

lithium anodes would, most likelv, act as scavangers for the dissolved iron species.

It would also be of Interest to estalilish the role of the iron deposits on the anode in

the formation of the passivating film and on the possible loss of lithium due to the

galvanic corrosion.

Experiments were designed to determine the iron contribttion from cold

rolled steel cans to the electrolyte and L.i anode, while holding the cold rolled steel

potentiostaticallv at the lithium potential in a specially designed cell and b% analyzing

the electrolyte periodically for iron.

Assuming great differences in the rate of iron generation between the cold

rolled steel and the stainless steel, when each of these materials was held in contact

with lithium, one should be able to demonstrate the difference in the voltage delay

after storage at elevated temperatures with the cell made with each of the two hard-

ware materials. This comparison is described later in the report. Our past experience

with the stainless steel used In the construction of small tells did not warrant an

Immediate investigation of the corrosion of this material, although it was thought that

the pertinent data should be generated at some later date. The investigation into

other hardware materials might be warranted should the test %kith the stainless steel

show a similar effect, since the negative effect of the iron species has been satis-

factorily documented in the earlier tests with completed cells. The tests with



finished cells were deigned to include the discharge capacities as .%ell. in an effor.

to establish whethet the -arious harfl are tna!trial, might oe of c rnse~uence to a

pxissihle loss of lithium li- the local -- ilvanic corrosion.

In the contiruiaig effort to gather more- storage data. ;eV(t.-ai cellS Tiade in

cold rolled steel cans Aere taken fron torage aftr three -nontris at too,, tenpe ratJtt

[he delavs and capacities %ill hw checked I is data A;i' also 0VU 1j t! rylicatiw!

of cold rolled steel's cf. ripatibilit% -ith the s stem.
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2. CORROSION OF COLD ROLLED STEEL IN CONTACI WITH LITHIUM

It has been the contention of the authors of this report that there would be no

hardware corrosion in cold rolled steel cans, due to cathodic protection of the cans by

the lithium. Recent data 4 showed that thionyl chloride is reduced very slowly on the

surface of nickel and stainless steel, when these materials were in contact with a

lithium anode in the thionyl chloride electrolyte. This study also showed that a

passivating film was formed on these materials. It was assumed that similar films

would be formed on the surface of cold rolled steel protecting it from corrosion in

storage. It was also assumed that the galvanic corrosion of the anode would not result

in a significant loss of lithium before the bare surface of the cold rolled steel was

completely passivated and the reauction of the thio, yl chloride discontirued.

The following experiment was done to confirm the fact that the cold rolled steel,

when held potentiostatically at the lithium potential, does not corrode. This experiment

was done concurrently with an in situ test reported in the next secticn.

2.1 EXPERIMENTAL

A glass cell was constructed as shown in Figure 1. A fine frit divided the two

chambers. A second joint was built into one of the chambers to accommodate a lithium

reference electrode. The tube holding the reference electrode was separated from the

bulk of the solution by a fine frit and a slight positive pressure was maintained by

overfilling the reference tube. The entire cell was immersed in an oil bath at 72 0 C

and brought to equilibrium. The working electrode was a round disk of cold rolled

steel 11. 29 cm 2 (one side). The Li reference electrode was placed directly above the

back side of the working electrode in very close proximity. Each chamber contained

200 cm 3 of electrolyte. The working electrode was kept at the potential of the lithium

reference electrode, while the current was monitored between the working and the

lithium counter electrode.

2.2 RESULTS

Upon initiation of the test, there was a strong cathodic current indicating the

reduction of thionyl chloride on the surface of the working electrode (cold rolled steel).

The current was 260 mA, or 23 mA/cm 2 of electrodp area. As shown In Figure 2,

the current decayed in a few hours to 6 mA, after 25 hours to 4 mA and leveled off at

5



1.3 mA at 45 hours and remained there until completion of the experiment. This decay-
is attributed to the forming of a passivating film of reduction products deposited on the

surface of the working electrode.

Calculating the amount of electrolyte lost to reduction over the course of one

mont on this surface area, using an average of 130 mA for the first 2 1/2 hours and

1.3 mA foi the !iext 717 hours yields:

(130 mA) (2.5 hours) 325 mA hours

(1.3 mA.) (717 hours) - 932 mA hours

1. 257 A Lours

Using a figure of 1.66 g of electrolyte per Ah of capacity, the total electrolyte loss it

one month due to this reaction is:

(1. 257 Ah) (1.66 g/Ah) - 2.09 g

This loss took place on a surface area of 11. 2Q cm 2 , so the loss is 0. 1R5 g/crn 2 of

exposed surface area over the course of one month at 72 0C.

The main objective of this experiment was to determine if there was any

corrosion of the cold rolled steel at the lithium potential. Ten milliliter aliquots

were drawn periodically and analyzed for iron by Atomic Absorption. Table 1 shows

the results of these analyses:

TABLE 1

IRON CONCENTRATION IN THE ELECTROLYTE -XT 72°C

TIME HOURS Fe IN El ECTIhOI.Y'I i."

0 9

19 9.,

91 13

163 17

225 20



The results are also represented graphically in Figure 3, showing a linear dependence

on time.

The loss of SOC12 by reduction on the surface of cold rolled steel is accompa ,ied

by an equivalent loss of lithium, amounting to 0. 325 g.

2.3 CONCLUSION

One of the first conclusions to be drawn from this experiment would be a

relatively insignificant rate of thionyl chloride consumption as far as the cell capacity

is concerned, due to a low surface area of the cold rolled steel directly exposed to the

electrolyte in actual cells.

Second, this experiment shows a minimal corrosion of the hardware when the

cold rolled steel is held at the lithium potential. If this is true in the case of a battery,

the inexpensive cold rolled steel would be the preferred material of construction.

In the next secion, this same experiment is done in situ in a cold rolled steel

can in an effort to determine if the case of the battery, when connected to the lithium

anode, is actually held at the lithium potential, thus preventing the corrosion of the can

as the above experiment suggested.

7
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3. CORROSION TESTS WITH COLD ROLLED STEEL CANS

A comparison should be made of the corrosion results obtained in the glass cell

with those obtained using a more realistic experimental arrangement involving the cell

hardware. The efficacy of the cathodic protection of the cell hardware by lithium must

be tested under the conditions prevailing inside the cell when a large surface area of

the cell hardware remains in a direct contact with the electrolyte. Preliminary

experiments carried out in the glass cell have indicated that the geometry of the steel-

lithium arrangement might be of consequence. Large sections of the cell can (at some

distance from the lithium covered section) will show a severe corrosion in spite of

being in contact with lithium. Local voltage differences along the surface of the same

piece of steel might be generated and they would be responsible for the corrosion

observed. Preliminary experiments of this kind are described below.

3.1 EXPERIMENTAL

Lithium foil was rolled against the interior surface of the D size cans, in the

same way in which lithium anodes are formed in the assemblage of the cells with the

concentrical arrangement of electrodes (high energy type cells). The cans were filled

with the electrolyte and closed without cathodes or separators. They were all stored

at 72°C and analyzed at various time intervals for the iron content of the electrolyte

by the Atomic Absorption Spectrophotometry (Perkin Elmer Model 460). The can

was then emptied of the rest of the electrolyte and washed several times with

tetrahydrofuran. The can with the lithium was then plunged into 1600 cm 3 of distilled

water. The solution was acidified with HCI to oxidize all the iron that might be present.

This solution was boiled down to 250 cm 3 and analyzed by Atomic Absorption to

determine if the lithium was taking up iron and at what rate

3.2 RESULTS

The results obtained in these experiments are presented in Table 2.

9



TABLE 2

IRON FOUND IN ELECTROLYTE AND IN THE ANODE

AFTER STORAGE AT 72 0C

CELL DAYS Fe Fe TOTAL
NO. STORED ELECTROLYTE ON LITHIUM mg

(ppm) (ppm)

1 5 6 27 0.249

2 10 146 9 5.410

3 13 253 15 9.4:0

4 19 252 4 9.328

5 26 180 16 6.676

6 31 39 35 1.478

The table shows a gradual increase of the iron concentration in the electrolyte with the

time of storage for approximately the first two weeks, followed by a gradual decrease

over the next two weeks. The iron content of the lithium anode was found to ',e extremely

erratic, suggesting, among other things, that the analytical procedure used may not

have been appropriate. The total amount of iron formed by corrosion is shown in the

last column of Table 2. Obviously, it shows inadequacies either in the analytical

procedures or in the experimental arrangements, since the iron corroded must be

found either in the electrolyte or on the anode.

3.3 CONCLUSIONS

The results of this experiment are inconclusive. It was theorized that initially,

if there were any corrosion, It should be quite rapid because the can surface is clean

and active. As reduction products build up on the surface of the steel the corrosion

should decline to a very small rate. It was further assumed that the concentration of

iron in electrolyte should increase to a maximum and then decrease to some unknown

value due to a plating out on lithium.

Figure 4 graphically depicts the data from Table 2. The graph correlates to

the theory as previously explained. There is a gradual rise in Fe concentration, a

10
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leveling out and then a slow decline, all as prelicted. The confusion arises when the

lithium is analyzed as described iii Section 3. 1. There Is not a significant rise in the

Fe concentration on lithium. A blank of lithium %.ll yield an iron concentration of

approximately 5 to 10 ppm. ;.s the electrolyte iron concentration was decreasing it was

assumed lithium was picking it up, but the lithium analysis did not prove that. One

possible explanation may be ir the washing technique. After the electrolyte was taken

out of the can, it was gently sprayed with THF to wash out any extraneous electrolyte,

since it would, in contact with water, attack the can and form more iron in the solution.

The iron which plates out on lithium may not be adhering very wpii and the spraying

with THF may be washing it off. This possibility is now being investigated and will be

discussed in the next report.

12



4. THE EFFECTS OF HARDWARE MATERIALS ON THE VOLTAGE DELAY

AND THE CELL CAPACITY

An attempt was made to coizrelate the results of the corrosion studies obtained

In the glass cell with Lhe effects of hardware materials on the performance of finished

cells. Two sets of cells were built for the purpose, one with stainless steel and one

with cold rolled steel hardware and stored at room temperature, 55°C and 72C. The

voltage delay after storage was expected to show a direct influence of tne iron present

in the solution and also of the rate at which lithium was dissolved in the galvanic cor-

rosion involving the reduction of SOC12 on the surface of cell hardware. A high rate

of the galvanic corrosion involving lithium dissolution should result in a lower value

of the voltage delay, since that would keep the surface of lithium free of the passi-

vating film Another consequence of that would be a significant loss in the cell

capacity due to the loss of lithium. A high rate of hardware corrosion would have a

negative effect on the voltage delay due to the effects of iron plated out on the lithium

surface. Another consequence of that would be a better preservation of t.'e cell

capacity (lower lithium losses on storage), at least at low discharge rates. A combined

effect of both factors should be seen in the discharge of the cells after storage.

4.1 CONSTRUCTION OF CELLS

Twelve cells were constructed for this part of the project; six in cold rolled

steel cans and six in stainless steel cans. The wound electrode structure was con-

structed with computer aided calculations to maximize the cell capacity for a

particular thickness of cathodes used.

The component dimensions were as follows:

I ENGTH-IN. TIICKNESS-IN. WIDTH-IN.

Cathode 14.0 0.033 1.875

Anode 15.4 0.020 1.75

Separator 35.0 0.005 2.00

All cells were hermetically sealed and filled with electrolyte by pre-evacuaton.

13



4.2 TEST DATA

As previously i.,entioned, six cold rolled steel cans were stared, two each at

the three different temperatures, along with six stainless steel cans. After one month

they were taken out of storage and allowed to equilibrate at room temperature fo, one

half day. The delays were measured using a current of 340 mA or approximately 1 mA /

cm 2 (both sides of cathode). Delays were measured using a Varian Aerograph Model

A-5 high speed strip chart recorder and are listed in Table 3. As in previous reports,

the delay is defined as any time the voltage of the cell stays below 2. 0 volts during the

Initial phase of discharge. After the delaN" tests the cells were completel\ discharged

at a constant current of 100 mA to a 2.0 volt cut-off. The capacities obtained are

listed in Table 4. The actual discharge curves are shown in Figures 5 through 7.

4.3 ANALYSIS AND CONCLUSIONS

The voltage delay data clearly show a superior performance of cells made

with stainless steel cans. he cold rolled steel cans show delay effects as soon as

they are exposed to temperatures higher than he ambient. This probably is the result

of the high rate of corrosion of cold rolled stecl with the iron plating out on the lithium

anode. The average discharge voltages for these cells, listed in Table 5 also suggest

the negative influence of the iron on the cell performance. The cold rolled steel cells

have a consistently lower average discharge voltage at the same discharge current

and at all three temperatures involved. At high temperatures, more iron is being
produced from corrosion and plated out on the lithium, thus, increasing the internal

impedance of the cell. Since the average voltages in the stainless steel cans are higher

than those observed in cold rolled steel, it can be concluded that the stainless steel

is subject to less corrosion at the same temperatures. At the storage temperature

of 72'C, the cold rolled steel cells are completely passivated. The stainless steel

cells at 72°C show somewhat lower capacity and also lower operating voltage then

those obtained at 55°C or room temperature. These results suggest that the s.ainless

steel cells might be subject to some degree of corrosion of lithium at 720C. However,
the post mortem analysis showed an excess of lithium to be present In discharge cells.

This would mean that the lower cell capacity was not the result of loss of active materials

but, rather the effect of an increased cell impedance, probably associated with the

original passive film formed during storage. This will be investigated in more detail

in the next quarter.
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TABLE 3

VOLTAGE DELAY AFTER STORAGE FOR 1 MONTH

STORAGE COLD ROLLED STEFL CANS STAINLESS STEEL CANS
TEMP.

ROOMTEM NO DELAY NO DELAY NO DELAY NO DELAYTEMP

NO RECOVERY 15 SEC to 1 V
55"C AFTER 6 MIN. LEVELS OFF 3.5 MIN 3 SEC

AT 1. 15V

72 0C NO RECOVERY NO RECOVERY NO DELAY NO DELAY

TABLE 4

DISCHARGE CAPACITY AFTER STORAGE FOR ONE MONTH

CELL NO. CAN TYPE STORAGE TEMP. CAPACITIES - Ahr.

1 ROOM 13.2
2 TEMP. 12.

3COLD 12.2
ROLLED 550 C 11.9
STEEL

5 72 0 C INOPERATIVE
6

7 ROOM 13.4
TEMP. 13.2

9 STAINLESS 12. P

10 STEEL 12.8

11 72 0C 9.5
12 9.6



TABLE 5

AVERAGE OPERATING VOl TAGES AT 100 mA AFTER STORAGE

CELL NO. CAN TYPE STORAGE TEMP. VOLTAGE - V

1 ROOM 3.390
2 TEMP. 3.43q

3 COLD 3210
4 ROLLED 55°C 3.405

STEEL
55 72 0 C INOPERATIVE
6

7 ROOM 3.43'
TEMP. 3.445

9 STAINLESS 55*C 3.412
10 STEEL 3.422

11 3. 337
12 3.340

19
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5. THREE MONTH STORAGE DATA WITH COLD ROLLED STEEL HARDWARE

Five wound D cells were constructed and stored at room temperature for

three months. These cells were not built with the aid of the computer calcuation and,

therefore, capacity was not optimized. A capacity of 9 to 10 Ah was expected according

to the previous experience with this type of cell after storage.

5.1 DELAY AND CAPACITY

The delay tests were carried out at a current of 300 mA using a high speed

strip chart recorder. Of the five cells only one showed a slight delay. All cells

retained their full capacity. The results are plotted in Figures 15, 16 and 17 and the

capacity listed in Table 6.

TABLE 6

CAPACITY AFTER STORAGE FOR THREE MONTHS

AT ROOM TEMPERATURE USING COLD ROLLED STEEL CANS

CELL NUMBER CAPACITY (Ah)

1 8.6

2 9.2

3 9.5

4 9.1

5 9.2

27
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5.2 CONCLUSIONS

It is obvious from this test that three months storage at roon: temperature

has no ill effects or the voltage delay or the capacity of the cell. The delay is not

much different from that of a fresh cell and the entire capacity seems to remain

available for discharge. This has generally been the result of most of tlhe tests run

at room temperature, including the early tests covering one month storage.
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6. NEXT QUARTER PROGRAM

The studies of the corrosion of stainless steel hardware will be continued

using both the glass cell set ups as well as the proper cell hardmare. In addition,

attention will be focused on the possible loss of lithium due to the galvanic corrosion

involving the reduction of SOCI 2 on the surface of hardware. Completed D size cells

will be used and the shelf life of the cell will be tested along with the hermetic cell

closure now in progress.
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